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Abstract

The paper presents a secret balloting system for elections car-
ried out in a computer network. The system has some features
not possessed by customary secret balloting systems and does not
rely on trusted persons and group work to the same extent as cus-
tomary systems. Our system uses protocols based on public-key
cryptography.
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1 Introduction

The institution of secret ballot is often mentioned as one of the hallmarks of
democratic electoral systems. The reason is obvious. Without ballot secrecy, the
voters could be deterred from revealing their true opinions about the issues to be
voted upon. Thus, the very rationale of voting, viz. giving voters the possibility
to express their opinions without fearing that they would be punished for having
them, would be undermined.

Customary secret balloting systems rely to a large extent on trusted persons
and group work. The counting of votes is done by specifically elected officials.
The basic method of securing ballot secrecy is to make sure that the ballots
of individual voters are not counted individually but in aggregates. Typically
all the ballots cast in a given election locale are counted simultaneously. This
means that the link between a voter and his/her (hereafter her) vote is broken.

The fact that voting takes place in specifically designated areas and that
all voters are identified before entering the balloting booth makes many forms
of electoral fraud difficult. Thus, deliberate errors in vote counting presuppose
the cooperation – voluntary or forced – of all persons working at a given voting
locale. The more persons supervise the electoral procedure and the more varie-
gated political views they represent, the less likely one is to encounter electoral
fraud of this kind, is a plausible conjecture. Yet fraudulent elections are known
to have been conducted.

When elections are conducted in computer networks, the secrecy issues are
somewhat different. On the other hand, present cryptographic techniques open
entirely new vistas for secret communication, and seemingly impossible tasks
become possible. For instance, a voter can check whether her vote has been cor-
rectly counted and also recast her vote within a certain period without jeopar-
dizing ballot secrecy. Before beginning a discussion concerning the requirements
for balloting systems in computer networks, we would like to mention an analo-
gous situation: banking and cashless payment systems. Most existing payment
systems are completely unacceptable, since banks and even computer manufac-
turers can easily observe who pays what amount to whom and when. Payment
systems guaranteeing security against fraud, and also enabling unobservability
of clients, are necessary [3]. Measures of jurisdiction alone are insufficient, since
infringements can hardly be discovered. For instance, the following require-
ments are connected with the unobservability of clients. Each payment should
be secret. Unless the client wishes otherwise, each of her actions should be
unlinkable to actions that have taken place earlier. The client should be able
to do business anonymously; the bank and the client’s business partners should
not be able to find out her identity. These and similar requirements should be
fulfilled without a trusted referee.

The purpose of this paper is to present a protocol to satisfy the following
seven requirements, discussed in more detail in [6] (see also [5]). The require-
ments 5–7 are usually not satisfied in contemporary balloting systems. There
has been a vivid public discussion in Finland recently concerning the issue of to
what extent these requirements increase the motivation of an average voter to
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vote. We would like to emphasize that there are many approaches in cryptog-
raphy dealing with related matters. They include an early contribution [4], as
well as recent ideas of G.Simmons. The work of Benaloh, [1], about balloting
systems has aims somewhat different from ours. Altogether a comprehensive
bibliography would have to include numerous contributions to cryptographic
protocols.

We now list our requirements.
By definition, any secret balloting system must satisfy the condition:

(i). No one but the voter knows which voting strategy the voter adopts.

But a satisfactory balloting system must also have at least two additional
properties:

(ii). Only legitimate voters may cast a valid vote.

(iii). Each legitimate voter may cast only one valid vote.

The conditions 1–3 are obvious desiderata that, no matter which other
plausible properties a system may have, cannot be dispensed with. Most
contemporary secret balloting systems strive to satisfy these conditions.
Thus, any system which fails to meet one of them is vulnerable to the
criticism that none of the existing systems fails on these conditions.

In addition to the above three, the following conditions would obviously
be desirable:

(iv). The voting may take place in a computer network, i.e. each voter may use
a terminal in casting her ballot.

(v). Each voter may check that her vote has been counted.

(vi). Each legitimate voter can change her mind (i.e. cancel her vote for a given
candidate and cast it in favour of another candidate) within a given period
of time.

(vii). Shoud the voter find out that her vote is misplaced, she can point this out
to the ballot counting system without jeopardizing ballot secrecy.

2 The protocol

We refer the reader to [7] for all unexplained notions in cryptography. In par-
ticular, we shall use without further explanations terminology customary in
public-key cryptography: one-way function, public encryption key,
secret decryption key, RSA, cryptographic hashing. As customary in
public-key cryptography, the possession of the secret decryption key is equiva-
lent to knowledge of a secret trapdoor to the one-way function.

In general, there are many security related questions in telecommunication.
They include:

- Who is out there?
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- Is she allowed to get this information?

- Will the information I send reach the right person?

- Has the information been seen by somebody else?

- Has the information been changed in transit?

- Can a sender deny having sent particular information?

- Can a receiver pretend not to have received particular information?

What kind of precautions and safety measures are called for depends largely
on the communication environment. In our protocol below, no further safety
measures are needed in most steps. Whenever needed, encryption by the
receiver’s public key and/or signature by the sender’s secret decryption key
may be applied. (For details, see [7]). To avoid unnecessary complications in
the exposition, we shall not dwell on this issue further.

In what follows we denote by A the agency supervising the electoral proce-
dure. We try to minimize A’s possibilities for fraudulent behaviour but cannot
entirely exclude them. Our main technical tool is the ANDOS (All or Nothing
Disclosure Of Secrets) protocol, explained in the Appendix. This is a protocol
for ”secret selling of secrets” in the following sense. S, a seller of secrets, has
listed a number of questions and offers to sell the answers to any of them . A
buyer B wants to buy a secret but does not want to disclose which one. The
protocol guarantees that B gets the secret she wants and nothing else, whereas
S does not know which secret B got.

We are now ready to describe our protocol.

Step 1. The agency A publishes a list of all legitimate voters.

Step 2. Within a specified deadline, everybody intending to vote reports her
intention to A.

Step 3. A publishes a list of voters participating in the election.

Steps 1–3 are preliminary ones. The main purpose is to find out and
publicize the total number n of active voters. Although some of them
might actually not participate, the possibilities of A for adding fraudulent
votes to the final count are considerably reduced. On the other hand, even
in contemporary balloting systems, at least in smaller circles, it is known
who exercized her right to vote. Also, it is easy to point out any possible
error in Step 3.

Step 4. A chooses n (= number of voters) identification tags and conducts the
ANDOS protocol for the voters. The identification tags are large random
primes. They are listed using the numbers 1, . . . , n.

More specifically, if a voter B has chosen the number i, then she gets
the ith prime pi from A’s list but A does not know the interconnection
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between i and B. It is possible in the ANDOS protocol that two vot-
ers choose the same number i and, thus, get the same identification tag
pi. The protocol is also quite complicated if n is large. Both of these
difficulties will be discussed in the next section.

Step 5. A voter B with the identification tag pi chooses a cryptographic hash
function hB(x, y) of two variables and sends A the pair (pi, hB(pi, vB)),
where vB is her vote (name of candidate or, more generally, her voting
strategy) expressed numerically. (We assume that the hash functions map
pairs of integers into integers.)

Step 6. A acknowledges receiving the information by publishing the value
hB(pi, vB).

Step 7. B sends A the pair (pi, h
−1

B ). Assuming that y can always be com-
puted, given hB(x, y), x and h−1

B , A now knows the interconnection be-
tween pi and vB (but not between B and vB).

A simplified version of Steps 5–7 would be that B sends A directly the
pair (pi, vB). However, it would then be impossible for B both to check
that her vote has been properly counted and to recast her vote at a later
stage. This follows because if A publishes the tag pi in the list of those
who adopted the strategy vB, then B surely knows that her vote has been
properly counted but anybody can later masquerade herself as the one
having the tag pi and, thus, recast B’s vote. On the other hand, if A only
publishes the number of the voters who adopted a specific strategy, then
the voters cannot check anything and A can publish any election result
whatsoever.

Step 6 gives B the possibility to check that A received her vote before A
publishes the result of the election. Moreover, if A does not publish at all
B’s vote in Step 8, or else publishes it in a wrong list, B can immediately
prove that A’s behaviour is fraudulent.

The use of the hash function adds to the security. Even if they know
h−1

B , the other voters cannot necessarily compute vB from the published
hB(pi, vB). The knowledge of many vB

′s before the end of the voting
period would, of course, open new vistas for strategic voting. Typically,
the hash function hB(x, y) is a one-way function applied to the product
xy. Then, one has to be able to factorize, even if one knows the inverse
of the one-way function, provided the numerical encoding of vB is chosen
in a suitable way. One possible way to do this is the following. Assume
that every voting strategy (name of the candidate, etc.) can be expressed
in five bits. Recall that pi is a large prime. Choose also vB to be a
large prime qi whose 10th, 20th, 30th, 40th and 50th bits constitute the
desired voting strategy. This method of choice has been agreed upon by
all participants. It does not slow down the generation of qi too much:
about 3% of all primes satisfy the condition. If one is able to factor piqi,
one is able to break RSA.
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Step 8. When the deadline for casting ballots is over, A announces the outcome
of the election by publishing, for each voting strategy v, the list of all
numbers hB(pi, vB) such that vB = v.

Step 9. If a voter B observes that her vote is not properly allocated, she
protests by sending A the triple (pi, hB(pi, vB), h−1

B ).

In view of Step 6, a protest also constitutes proof of the fact that voter B
is right and, therefore, A has to correct the result accordingly.

After observing the actions of the elected people for some time, some
of the voters might want to change their minds and recast their ballots.
Such a procedure is described in the final step. A simpler variant (Step
10) can be used if the recasting of the ballot is done only once. A more
involved variant (Step 10’) is called for if several possibilities of recasting
are allowed.

Step 10. The voters B wanting to recast their ballot send A the triple (pi,
hB(pi, vB), v′B), where v′B is the new voting strategy. (In fact, hB(pi, vB) is
sent only to make A’s job easier.) When the deadline for recasting is over,
A publishes the modified election result, where the numbers hB(pi, vB)
have been reallocated in the list. The voters can also now check that their
new votes have been properly counted.

Step 10’. As Step 10, but now B sends A the pair (pi, h
′

B(pi, v
′

B)), where
h′

B is a new hash function chosen by B. A acknowledges receiving the
message by publishing the value h′

B(pi, v
′

B), after which B sends A the
pair (pi, (hB

′)−1). A now knows the interconnection between pi and v′B.
In the new election result, hB(pi, vB) is removed from the list for v = vB,
and h′

B(pi, v
′

B) is added to the list for v′ = v′B. Voters B can protest as
before.

In comparison with Step 10, Step 10’ has the additional advantage that
the voters other than B only observe that something vanished from the
list for v but do not know that it went to the list for v′.

3 Further discussion

Our protocol was already discussed from many points of view in Section 2. Some
additional remarks are in order.

The ANDOS protocol may assign the same identification tag to different
voters. There are two ways to overcome this difficulty.

(i) A ensures that the number of identification tags is so much larger than the
number of voters that the probability for such a coincidence is negligible.
In spite of the birthday paradox, the number of tags still remains within
reasonable bounds.

(ii) When receiving an identification tag pi for the second time, A publishes
the pair (p′i, hB(pi, vB)), where p′i is a tag that was not ”for sale” in the

6



ANDOS protocol. (A has a few such surplus tags available.) B sees
from the second component that she is in question and sends A the pair
(p′i, hB(p′i, vB)). Other voters cannot do this, since they do not know
the hash function hB. The process continues as before: A publishes
hB(p′i, vB), etc. After getting h−1

B , A is assured that the correct voter
reacted.

Thus, we may assume that different voters have been assigned different iden-
tification tags. We may also assume that the important numbers hB(pi, vB) are
all different, i.e., that the equation hB(pi, vB) = hC(pj , vC) does not hold for
any other voter C with the identification tag pj . For instance, if the primes
involved have 100 digits (as recommended in RSA), then the probability of such
a coincidence is negligible for any realistic population of voters.

We have shown that our protocol satisfies the requirements 1–7. Moreover,
an observed fraud or error leads to the correction of the result, at least in normal
cases. Cheating by the agency A may remain undiscovered if some of the voters
who reported in Step 2 do not actually vote. Then A can allocate their ”votes”
arbitrarily.

There are two obvious drawbacks. The incentives for selling and buying
of votes become considerably stronger as the buyer can be sure that the seller
also delivers the goods, i.e., votes as promised. However, this is a necessary
characteristic of any system satisfying our requirements.

Another drawback is the complexity of the ANDOS protocol. The ANDOS
protocol can be avoided, as done in [6], if the agency gives the voters only
a common password and the voters choose the identification tags themselves.
Then, however, only the total count of votes can be used to prevent the voters
from voting several times.

On the other hand, excessively large populations can be avoided by dividing
them into smaller parts. Then the agency will know the distribution of votes
in each part. This is not a very serious drawback: the distribution of votes
within voting districts is also known in contemporary elections. It might also
be possible to ”nest” ANDOS protocols. However, we have not been able to
find any simple way of doing that.

4 Conclusions

We have presented a secret balloting system which satisfies, in addition to the
customary requirements, also some new requirements without jeopardizing se-
crecy. One of the drawbacks is inherent in the requirements. The other, the
computational complexity, can be removed by making some of the new require-
ments less demanding. We hope to return to these issues in our forthcoming
work.
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5 Appendix

Some rather complicated ANDOS protocols, based on zero knowledge proofs,
are hinted at in [2]. The following protocol, first discussed in [8], is based on
the fact that there are several buyers.

Assume that s1, . . . , sk are secrets possessed by S, each of them containing
n bits. For each sj, S has publicized what the secret is about.

We consider first the case of two buyers B and C who want to buy secrets
sj and sj′ , respectively. The idea is that the buyers have individual one-way
functions and each of them operates on numbers provided by the other.

Step 1. S tells B and C individually the one-way functions f and g but keeps
the inverses to herself.

Step 2. B tells C (respectively C tells B) k random n-bit numbers x1, . . . , xk

(respectively x′

1
, . . . , x′

k).

For an injection f mapping n-bit numbers into n-bit numbers and an n-bit
number x, we say that an index i, 1 ≤ i ≤ n, is a fixed bit index (FBI)
with respect to the pair (x, f) if the ith bit in x equals the ith bit in
f(x). Clearly, i is FBI with respect to (x, f) iff i is FBI with respect to
(f(x), f−1). If f has reasonably random behaviour (like the customarily
considered encryption functions) then, for a random x, roughly n/2 indices
are FBI’s with respect to (x, f).

Step 3. B tells C (respectively C tells B) the set FBIB of FBI’s with respect
to (x′

j , f) (respectively the set FBIC of FBI’s with respect to (xj′ , g)).

Step 4. B (respectively C) tells S the numbers y1, . . . , yk (respectively y′

1, . . . ,
y′

k), where yi results from xi by replacing every bit whose index is not in
FBIC with its complement (respectively y′

i results from x′

i by replacing
every bit whose index is not in FBIB with its complement).

Step 5. S tells to B (respectively C) the numbers

si ⊕ f−1(y′

i)(respectively si ⊕ g−1(yi)), i = 1, . . . , k.

Step 6. B (respectively C) is able to compute sj (respectively s′j) since she

knows x′

j = f−1(y′

j) (respectively xj′ = g−1(yj′ ) ).

B and C learn the secret they want. S does not learn anything about the
choices, and neither do B and C learn more than one secret or the choice of the
other. A coalition between B and C amounts to B and C learning all secrets. A
coalition between S and one of the buyers reveals which secret the other buyer
wants.

Let us consider a simple example. RSA is used to construct the one-way
functions needed.

Example. Choose k = 8, n = 12. Assume that S has the following eight
12-bit secrets for sale: s1 = 1990, s2 = 471, s3 = 3860, s4 = 1487, s5 = 2235,
s6 = 3751, s7 = 2546, s8 = 4043.
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Step 1. S tells B (respectively C) the function f (respectively g) based
on n1 = 7387 (respectively n2 = 2747) which is the product of the primes
p1 = 83, q1 = 89 (respectively p2 = 67, q2 = 41). The encryption and decryption
moduli are d1 = 777, e1 = 5145 (respectively d2 = 2261, e2 = 1421).

Step 2. B tells C eight 12-bit numbers xi, 1 ≤ i ≤ 8 : x1 = 743, x2 = 1988,
x3 = 4001, x4 = 2942, x5 = 3421, x6 = 2210, x7 = 2306, x8 = 912.

C tells B eight 12-bit numbers x′

i, 1 ≤ i ≤ 8 : x′

1
= 1708, x′

2
= 711,

x′

3 = 1969, x′

4 = 3112, x′

5 = 4014, x′

6 = 2308, x′

7 = 2212, x′

8 = 222.
Step 3. B wants to buy the secret s7. Therefore she computes

f(x′

7
) = x′

7

e1(mod n1) = 22125145(mod 7387) = 5928.

Comparing the binary representations of x′

7 and f(x′

7),

2212 = 0100010100100

5928 = 1011100101000

B tells C the set FBIB = {0, 1, 4, 5, 6} of FBI’s with respect to (x′

7, f).
C wants to buy the secret s2. After the computations, C tells B the set

FBIC = {0, 1, 2, 6, 9, 10} of FBI’s with respect to (x2, g).
Step 4. B tells S the numbers yi, 1 ≤ i ≤ 8, where yi results from xi

by replacing every bit whose index is not in the set {0, 1, 2, 6, 9, 10} with its
complement, for instance:

y2 = 011001111100 = 1660.

C tells S the numbers y′

i, 1 ≤ i ≤ 8, where y′

i results from x′

i by replacing
every bit whose index is not in the set {0, 1, 4, 5, 6} with its complement, for
instance:

y′

7 = 1011100101000 = 5928.

Step 5. S tells B the numbers si ⊕f−1(y′

i), 1 ≤ i ≤ 8 (recall that f−1(y′) =
y′d1(mod n1) = y′777(mod 7387)), for example:

s7 = 2546 = 0100111110010
f−1(y′

7
) = 2212 = 0100010100100

s7 ⊕ f−1(y′

7
) = 0000101010110 = 342

S tells C the numbers si ⊕ g−1(yi), 1 ≤ i ≤ 8 (g−1(y) = yd2(mod n2) =
y2261(mod 2747)), for example:

s2 = 471 = 000111010111
g−1(y2) = 1988 = 011111000100

s2 ⊕ g−1(y2) = 011000010011 = 1555

Step 6. B learns the secret s7 by computing the bitwise addition of x′

7 and
the 7th number received from S, that is:
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x′

7
= 2212 = 100010100100

342 = 000101010110
100111110010 = 2546.

As C wants to buy the secret s2 she computes the bitwise addition between
x2 and the 2nd number received from S, that is:

x2 = 1988 = 11111000100
1555 = 11000010011

00111010111 = 471.

We have observed that in case of many buyers, the main difficulty is due to
coalitions. However, if there are at least three buyers, it seems that one honest
buyer is enough to make the cheating of the other buyers impossible. So no
honest majority is needed. Let us see how this works.

We assume that there are three buyers A, B, C and describe the protocol
from A’s point of view. A wants the secret sj .

Step 1. S tells A two one-way functions fB
A and fC

A .

Step 2. B (respectively C) tells A k random n-bit numbers xBA
1 , . . . , xBA

k (re-
spectively xCA

1
, . . . , xCA

k ).

Step 3. A tells B (respectively C) the set FBIBA (respectively FBICA) of FBI’s
with respect to the pair (xBA

j , fB
A ) (respectively the pair (xCA

j , fC
A )).

Step 4. B (respectively C) tells S the numbers yBA
i obtained from xBA

i (re-
spectively yCA

i obtained from xCA
i ), i = 1, . . . , k, by replacing every bit

whose index is not in FBIBA (respectively FBICA) with its complement.

Step 5. S tells A the numbers

si ⊕ (fB
A )−1(yBA

i ) ⊕ (fC
A )−1(yCA

i ), i = 1, . . . , k.

Step 6. A is able to compute sj since she knows xBA
j = (fB

A )−1(yBA
i ) and

xCA
j = (fC

A )−1(yCA
i ).

Analogous parts should be stated for B and C to complete the protocol.
Thus, S gives both of them two one-way functions, both of them receive numbers
from the other two buyers, etc. The protocol works in exactly the same way for
t > 3 buyers. Each of the buyers gets t − 1 one-way functions from the seller,
as well as sets of numbers from all of her fellow buyers.

It is clear that each of the buyers gets the secret she wants. It is also
clear that if all buyers are in coalition, they learn all the secrets. However, no
coalition of t − 1 (or less) dishonest buyers can gain much because every bit in
the sequences sent to them by S depends on a bit provided by the honest buyer.

10



References

[1] J.D.C.Benaloh. Verifiable secret-ballot elections. Yale University, Computer
Science Department, Technical Report 561(1987).

[2] G.Brassard, C.Crepeau and J.-M. Robert. All-or-nothing disclosure of se-
crets. Springer Lecture Notes in Computer Science 263(1987), 234–38.

[3] H.Burk and A.Pfitzmann. Digital payment systems enabling security and
unobservability. Computers and Security 9(1989), 399–416.

[4] D.Chaum. Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms. Comm. ACM 24(1981), 84-88.

[5] H.Nurmi and A.Salomaa. A cryptographic approach to the secret ballot.
Behavioral Science 36(1991), 34-40.

[6] H.Nurmi and A.Salomaa. Secret ballot elections and public-key cryptosys-
tems. Submitted for publication.

[7] A.Salomaa. Public-Key Cryptography. Springer-Verlag Berlin-Heidelberg-
New York-Tokyo (1990).

[8] A.Salomaa and L.Santean. Secret selling of secrets with many buyers.
EATCS Bulletin 42(1990), 178–186.

11


